Wednesday, March 15, 2017

Monday reads

Monday reads on a Wednesday - just the result of some conference travel. For the same reason there are a few more articles than usual. Interesting reads as always.

Land-use intensification threatens freshwater biodiversity. Freshwater eukaryotic communities are affected by multiple chemical contaminants with a land-use specific manner. However, biodiversities of eukaryotes and their associations with multiple chemical contaminants are largely unknown. This study characterized in situ eukaryotic communities in sediments exposed to mixtures of chemical contaminants and assessed relationships between various environmental variables and eukaryotic communities in sediments from the Nanfei River. Eukaryotic communities in the sediment samples were dominated by Annelida, Arthropoda, Rotifera, Ochrophyta, Chlorophyta and Ciliophora. Alpha-diversities (Shannon entropy) and structures of eukaryotic communities were significantly different between land-use types. According to the results of multiple statistical tests (PCoA, distLM, Mantel and network analysis), dissimilarity of eukaryotic community structures revealed the key effects of pyrethroid insecticides, manganese, zinc, lead, chromium and polycyclic aromatic hydrocarbons (PAHs) on eukaryotic communities in the sediment samples from the Nanfei River. Furthermore, taxa associated with land-use types were identified and several sensitive eukaryotic taxa to some of the primary contaminants were identified as potential indicators to monitor effects of the primary chemical contaminants. Overall, environmental DNA metabarcoding on in situ eukaryotic communities provided a powerful tool for biomonitoring and identifying primary contaminants and their complex effects on benthic eukaryotic communities in freshwater sediments.

no abstract

DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign unidentified specimens to known species in a library based on a genetic distance threshold that distinguishes between-species divergence from within-species diversity. Recently developed species delimitation methods based on the multispecies coalescent (MSC) model offer an alternative approach to individual assignment using either single-locus or multi-loci sequence data. Here we use simulations to demonstrate three features of an MSC method implemented in the program bpp. First, we show that with one locus, MSC can accurately assign individuals to species without the need for arbitrarily determined distance thresholds (as required for barcoding methods). We provide an example in which no single threshold or barcoding gap exists that can be used to assign all specimens without incurring high error rates. Second, we show that bpp can identify cryptic species that may be mis-identified as a single species within the library, potentially improving the accuracy of barcoding libraries. Third, we show that taxon rarity does not present any particular problems for species assignments using bpp, and that accurate assignments can be achieved even when only one or a few loci are available. Thus, concerns that have been raised that MSC methods may have problems analyzing rare taxa (singletons) are unfounded. Currently barcoding methods enjoy a huge computational advantage over MSC methods and may be the only approach feasible for massively large datasets, but MSC methods may offer a more stringent test for species that are tentatively assigned by barcoding.

Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The genetic lineage of the individuals, assessed by DNA barcoding with cytochrome c oxidase subunit I, did not influence mt expression.

DNA barcoding is a commonly used bio-technology in multiple disciplines including biology, environmental science, forensics and inspection, etc. Forest dynamic plots provide a unique opportunity to carry out large-scale, comparative, and multidisciplinary research for plant DNA barcoding. The paper concisely reviewed four previous progresses in China; specifically, species discrimination, community phylogenetic reconstruction, phylogenetic community structure exploration, and biodiversity index evaluation. Further, we demonstrated three major challenges; specifically, building the impetus to generate DNA barcodes using multiple plant DNA markers for all woody species at forest community levels, analyzing massive DNA barcoding sequence data, and promoting theoretical innovation. Lastly, we raised five possible directions; specifically, proposing a "purpose-driven barcode" fit for multi-level applications, developing new integrative sequencing strategies, pushing DNA barcoding beyond terrestrial ecosystem, constructing national-level DNA barcode sequence libraries for special plant groups, and establishing intelligent identification systems or online server platforms. These efforts will be potentially valuable to explore large-scale biodiversity patterns, the origin and evolution of life, and will also facilitate preservation and utilization of biodiversity resources.

No comments:

Post a Comment