Monday, April 3, 2017

Monday reads

Happy April! Another week of light posting passed and I am afraid there will be one more of the same. A number of things got in the way despite the fact that there is no shortage of things to blog about. In short - I am too busy. Here is hope that this will change in the near future. And now to this weeks selection:

DNA-barcoding is a rapidly developing method for efficiently identifying samples to species level by means of short standard DNA sequences. However, reliable species assignment requires the availability of a comprehensive DNA barcode reference library, and hence numerous initiatives aim at generating such barcode databases for particular taxa or geographic regions. Historical museum collections represent a potentially invaluable source for the DNA-barcoding of many taxa. This is particularly true for birds and mammals, for which collecting fresh (voucher) material is often very difficult to (nearly) impossible due to the special animal welfare and conservation regulations that apply to vertebrates in general, and birds and mammals in particular. Moreover, even great efforts might not guarantee sufficiently complete sampling of fresh material in a short period of time. DNA extracted from historical samples is usually degraded, such that only short fragments can be amplified, rendering the recovery of the barcoding region as a single fragment impossible. Here, we present a new set of primers that allows the efficient amplification and sequencing of the entire barcoding region in most higher taxa of Central European birds and mammals in six overlapping fragments, thus greatly increasing the value of historical museum collections for generating DNA barcode reference libraries. Applying our new primer set in recently established NGS protocols promises to further increase the efficiency of barcoding old bird and mammal specimens.

We foresee a new global-scale, ecological approach to biomonitoring emerging within the next decade that can detect ecosystem change accurately, cheaply, and generically. Next-generation sequencing of DNA sampled from the Earth’s environments would provide data for the relative abundance of operational taxonomic units or ecological functions. Machine-learning methods would then be used to reconstruct the ecological networks of interactions implicit in the raw NGS data. Ultimately, we envision the development of autonomous samplers that would sample nucleic acids and upload NGS sequence data to the cloud for network reconstruction. Large numbers of these samplers, in a global array, would allow sensitive automated biomonitoring of the Earth’s major ecosystems at high spatial and temporal resolution, revolutionising our understanding of ecosystem change.

Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

Determining the ecosystem function of high-order predators is critical for evaluation of food web interactions. Insectivorous birds are abundant predators in many ecosystems yet because they forage upon small taxa, it remains largely unknown whether birds are providing ecosystem services in the form of pest control or disservices by preying upon predaceous arthropod species. We extracted DNA from noninvasive fecal samples of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. Using universal arthropod-specific primers, we sequenced prey items via massively parallel sequencing on the Illumina MiSeq platform. Bluebirds consumed a broad diet comprising 66 unique arthropod species from 6 orders and 28 families. Aedes sp. (mosquitoes: Culicidae), a previously unknown prey, was the most common item recovered, occurring in 49.5% of the fecal samples. Ectoparasitic bird blowfly (Protocalliphora) DNA was found in 7% of adult and 11% of nestling samples, presenting clear evidence of active feeding by the avian hosts on adult or larval ectoparasites. Herbivorous insects, primarily from the orders Hemiptera and Lepidoptera, represented over half (56%) of the prey items in bluebird diets. Intraguild predation (consumption of predator or parasitoid arthropods) represented only 3% of adult and nestling dietary items. Diets of adults were significantly different from nestlings as were diets from birds sampled in different vineyard blocks. Sex, date, number of young, and individual bird (based on resampled individuals) were all insignificant factors that did not explain diet variability. Nestling age was a significant factor in explaining a small amount of the variability in dietary components. In addition, our analysis of subsampling larger fecal samples and processing them independently revealed highly dissimilar results in all 10 trials and we recommend avoiding this common methodology. Molecular scatology offers powerfully informative techniques that can reveal the ecosystem function and services provided by abundant yet cryptic avian foragers.


No comments:

Post a Comment